785. Molecular Polarisability: The Conformations of Diethyl Oxalate, Malonate, Succinate, Adipate, and Sebacate as Solutes in Carbon Tetrachloride.

By M. J. Aroney, D. Izsak, and R. J. W. Le Fèvre.

Abstract

Dipole moments, molar Kerr constants, etc., are recorded for the esters named in the title. From known bond polarities and polarisabilities, the resultant moments and anisotropies of various conformations of these "flexible" esters are computed a priori, and are compared with values from experiment. In ethyl acetate the $\mathrm{C}_{2} \mathrm{H}_{5}$ group appears to lie in a plane normal to that containing the $\mathrm{Me} \cdot \mathrm{CO}_{2}$ unit. Diethyl oxalate is probably a mixture of cis- and trans-isomers, neither of which is planar. Observations on the remaining esters can be interpreted only if with such solutes several (specified) forms are simultaneously present.

Measurements here recorded concern $\alpha \omega$-diethyl esters of the type $\left[\mathrm{CH}_{2}\right]_{n}(\mathrm{CO} \cdot \mathrm{OEt})_{2}$ having $n=0,1,2,4$, and 8 . They each contain six polar bonds for which a variety of mutual dispositions are possible even if internal rotations are hindered. The literature gives little information on the conformations adopted by such " flexible" molecules as solutes-a state to which our methods, dependent on the analysis of polarisability and polarity into bond values having directional qualities, are conveniently applicable.

Experimental

The esters were purified commercial samples; they were dried with anhydrous magnesium sulphate, then redistilled immediately before solutions were prepared: diethyl malonate, b. p. 198°; diethyl succinate, b. p. 217-218 ${ }^{\circ}$; diethyl adipate, b. p. $102-106^{\circ} / 4 \mathrm{~mm}$.; diethyl sebacate, b. p. $142-144^{\circ} / 3-5 \mathrm{~mm}$.

Details of procedures, apparatus, computational methods, symbols used, etc., are given in refs. 1-3. For pure carbon tetrachloride (i.e., when $w_{2}=0$ in Table 1) at 25°, the properties indicated have values as follow: ε (dielectric constant) $=2 \cdot 2270 ; d$ (density) $=1.58454$; n (refractive index) $=1.4575 ; B($ Kerr constant $)=0.070 \times 10^{-7}$.

Previous Measurements.-There are no dipole-moment determinations, made before 1948, listed by Wesson ${ }^{4}$ in the M.I.T. Tables, for these esters as solutes in carbon tetrachloride. Since 1948 the annexed have been recorded.

Solute \dagger	Solvent	μ (D)	Ref.	Solute \dagger	Solvent	μ (D)	Ref.
Et_{2} malonate	$\mathrm{C}_{6} \mathrm{H}_{6}$	$2 \cdot 1$	5	Et_{2} adipate	$\mathrm{C}_{6} \mathrm{H}_{6}$	$2 \cdot 25$	5
"		2.47-2.51 *	6	',	,,	$2 \cdot 42$	7
,'	Dioxan	$2.49-2.52$ *	6	,	,'	2.35-2.39*	6
$E t_{2}$ succinate	$\mathrm{C}_{6} \mathrm{H}_{6}$	2.13-2.14*	6	, ,	Dioxan	2.38-2.41*	6
',	Dioxan	2.15-2.20*	6	$E t_{2}$ sebacate	$\mathrm{C}_{6} \mathrm{H}_{6}$	$2.42-2.45$ *	6
					Dioxan	$2.43-2.48$ *	6

* Only determinations at 20° have been included; ref. 6 contains also measurements at 45° and 70°.
\dagger No earlier estimates exist of the molar Kerr constants of these four esters.

Discussion

Anisotropic Polarisabilities of the Ethoxycarbonyl Group.-Le Fèvre and Sundaram ${ }^{8}$ have shown that for methyl acetate the carbon atom, corresponding to ${ }^{*} \mathrm{C}$ in Fig. 1, is

[^0]Table 1.
Incremental Kerr effects, refractive indexes, dielectric constants, and densities of solutions in carbon tetrachloride at 25°.

Diethyl malonate									
$10^{5} w_{2}$	2631	3124	3967	4081	4214	4373			
$10^{7} \Delta B$	$0 \cdot 054$	$0 \cdot 064$	$0 \cdot 079$	$0 \cdot 081$	$0 \cdot 082$	$0 \cdot 084$			
$-10^{4} \Delta n$			-	28	29	30			
whence $\Sigma 10^{7} \Delta B / \Sigma w_{2}=1.99 ; \Sigma \Delta n / \Sigma w_{2}=-0.069$									
$10^{5} w_{2}$	390	756	1024	1052	1535	1583	2588	2910	3344
$\varepsilon^{25} \ldots$	$2 \cdot 2575$	$2 \cdot 2860$	$2 \cdot 3046$	$2 \cdot 3066$	$2 \cdot 3414$	$2 \cdot 3450$	$2 \cdot 4174$	-	$2 \cdot 4708$
$d_{4}{ }^{25}$	$1 \cdot 58124$	1.57826	1.57620	1.57596	-	-	$1 \cdot 56358$	$1 \cdot 56070$	-
whence $\Delta \varepsilon=7.70 w_{2}-12.4 w_{2}^{2} ; ~ \Sigma \Delta d / \Sigma w_{2}=-0.818$									
Diethyl sucinnate									
$10^{5} w_{2}$	2393	2886	3574	4381	4499	6317			
$10^{7} \Delta B$	$0 \cdot 019$	$0 \cdot 023$	$0 \cdot 029$	$0 \cdot 036$	0.037	$0 \cdot 051$			
$-10^{4} \Delta n$		-	-	26	27	37			
whence $\Sigma 10^{7} \Delta B / \Sigma w_{2}=0.809 ; ~ \Sigma \Delta n / \Sigma w_{2}=-0.059$									
$10^{5} w_{2}$	642	834	1372	1685	2145	2610	2805	4244	
$\varepsilon^{25} \ldots$	$2 \cdot 2570$	$2 \cdot 2657$	$2 \cdot 2905$	-	$2 \cdot 3264$	$2 \cdot 3469$		$2 \cdot 4212$	
$d_{4}{ }^{25}$	$1 \cdot 57908$	1.57753	1.57297	1.57029	$1 \cdot 56657$	$1 \cdot 56278$	$1 \cdot 56113$	-	
whence $\Sigma \Delta \varepsilon / \Sigma w_{2}=4.66 ; \Sigma \Delta d / \Sigma w_{2}=-0.839$									
Diethyl adipate									
$10^{5} w_{2}$	1317	1475	2017	2089	3059	3270			
$10^{7} \Delta B$	$0 \cdot 017$	0.020	$0 \cdot 026$	$0 \cdot 028$	0.042	0.044			
$-10^{4} \Delta n$	-	-	-	8	14	15			
whence $\Sigma 10^{7} \Delta B / \Sigma w_{2}=1.33 ; \Sigma \Delta n / \Sigma w_{2}=-0.044$									
$10^{5} w_{2}$	541	702	1317	1475	2017	2089			
$\varepsilon^{25} \ldots$	$2 \cdot 2546$	$2 \cdot 2629$	$2 \cdot 2930$	$2 \cdot 3024$	$2 \cdot 3285$	2.3321			
$d_{4}{ }^{25}$	$1 \cdot 57976$	1.57827	$1 \cdot 57274$	1.57128	$1 \cdot 56672$	1.56577			
whence $\Sigma \Delta \varepsilon / \Sigma w_{2}=5.01 ; \Sigma \Delta d / \Sigma w_{2}=-0.893$									
Diethyl sebacate									
$10^{5} w_{2}$	1665	2537	3223	3511	3800	5029	5036	5312	
$10^{7} \Delta B$	0.014		$0 \cdot 028$	-	$0 \cdot 034$	$0 \cdot 043$	$0 \cdot 044$	0.046	
$-10^{4} \Delta n$	-	8	-	11	-	-	-	-	
whence $\Sigma 10^{7} \Delta B / \Sigma \mathrm{w}_{2}=0.867 ; \Sigma \Delta n / \Sigma w_{2}=-0.031$									
$10^{5} w_{2}$	253	881	1354	1665	3223	3800	5003	5036	
ε^{23}..	8208	$2 \cdot 2691$	$2 \cdot 2920$	$2 \cdot 3065$	$2 \cdot 3805$	$2 \cdot 4068$	$2 \cdot 4619$	$2 \cdot 4645$	
$d_{4}{ }^{25}$	1.58208	1.57574	$1 \cdot 57095$	1.56770	$1 \cdot 55283$		-	1-53499	
whence $\Sigma \Delta \varepsilon / \Sigma w_{2}=4.72 ; \Sigma \Delta d / \Sigma w_{2}=-0.991$									

Table 2.
Polarisations, dipole moments, and molar Kerr constants (from observations on solutions in carbon tetrachloride at 25°).

Solute	$\alpha \varepsilon_{1}$	β	γ	δ	∞_{2} (c.c.)	$R_{\text {D }}$ (c.c.)	μ (D) *	$10^{12} \infty\left({ }_{m} K_{2}\right)$
$\mathrm{CH}_{2}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}$	$7 \cdot 70$	$-0.51{ }_{6}$	-0.047	$28 \cdot 4$	$175 \cdot 2$	38.3	2.57	$31 \cdot 6$
$\left[\mathrm{CH}_{2}\right]_{2}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}$.	$4 \cdot 66$	-0.52^{6}	-0.040	11.6	$134 \cdot 8$	$42 \cdot 5$	$2 \cdot 10$	$14 \cdot 3$
$\left[\mathrm{CH}_{2}\right]_{4}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}$.	$5 \cdot 01$	$-0.56{ }_{3}$	-0.030	$19 \cdot 0$	166.3	$51 \cdot 5$	$2 \cdot 34$	$27 \cdot 6$
$\left[\mathrm{CH}_{2}\right]_{8}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2} \ldots$	$4 \cdot 72$	-0.625	-0.022	12.4	$206 \cdot 1$	$69 \cdot 6$	$2 \cdot 55$	$22 \cdot 8$

$*^{\text {C Calc. by assuming }}{ }_{\mathrm{D}} P=1 \cdot 05 R_{\mathrm{D}}$.

Table 3.
Calculations for ethyl acetate.

Fig.	$10^{23} b_{1}$	$10^{23} b_{2}$	$10^{23} b_{3}$	$10^{12}{ }_{\mathrm{m}} K$, calc.	$10^{12} \infty\left({ }_{m} K_{2}\right)$
1	0.928	0.949	$0 \cdot 699$	$+24 \cdot 1$	$+20 \cdot 1$
$2 a$	0.967	0.880	0.729	$+27 \cdot 7$,\quad,
$2 b$	0.929	0.878	0.770	+19.4	,

elevated 30° from the trigonal carbon plane (cf. ref. 9, p. 4223; ref. 10, M 132). If then the methyl acetate skeleton is retained in ethyl acetate, ${ }^{*} \mathrm{C}-\mathrm{C}$ can be rotated about $\mathrm{O}-\mathrm{C} *$ as axis through a range of approximately $\pm 110^{\circ}$ from the position supposed in Fig. 1, i.e., in which ${ }^{*} \mathrm{C}-\mathrm{C}$ is roughly parallel with $\mathrm{C}-\mathrm{O}$ but elevated above the $s p^{2}$-carbon plane. Molecular models show that rotations greater than this result in steric interaction with the carbonyl group. Positions a and b in Fig. 2 represent the two possible dispositions of the ethyl group when the plane $\mathrm{O}^{-*} \mathrm{C}-\mathrm{C}$ is normal to that of the trigonal carbon valencies. Molecular polarisability semi-axes for the configurations, $1,2 a$, and $2 b$, have been calculated by addition of bond components and these, together with the resolutes of the permanent dipole moment along the principal axes, lead to estimates of the molar Kerr constant ($\mathrm{m} K$,calc.) for each structure. Calculations are summarised in Table 3. The following bond polarisability specifications were used: $b_{\mathrm{L}}^{\mathrm{C}-\mathrm{C}}=0.099, b_{\mathrm{T}}^{\mathrm{C}} \mathrm{C}=b_{\mathrm{V}}^{\mathrm{C}} \mathrm{C}=0.027, b_{\mathrm{L}}^{\mathrm{C}} \mathrm{H}=$ $b_{\mathrm{T}}^{\mathrm{C}-\mathrm{H}}=b_{\mathrm{V}}^{\mathrm{C}-\mathrm{H}}=0.064, \quad b_{\mathrm{L}}^{\mathrm{C}} \mathrm{O}=0.081, \quad b_{\mathrm{T}}^{\mathrm{C}-\mathrm{O}}=b_{\mathrm{V}}^{\mathrm{C}-0}=0.039, \quad b_{\mathrm{L}}^{\mathrm{C}} \mathrm{CO}=0.230, \quad b_{\mathrm{T}}^{\mathrm{C}=0}=0.140$, $b_{\mathrm{v}}^{\mathrm{C}=\mathrm{O}}=0.046$ (all $\times 10^{-23}$ c.c.).

Fig. 1.

Fig. 2.

(a)
(b)

Fig. 3.

Configuration $2 b$ affords best agreement with experiment. If from the polarisability tensor for this structure, the elements of which are referred to the axes X, Y, Z of Fig. 1, we subtract the contributions of three $\mathrm{C}-\mathrm{H}$ bonds and of the link $\mathrm{C}-\mathrm{C}$, we derive the semiaxes $b_{\mathrm{i}}{ }^{\prime}$ specifying the group $\mathrm{CO}_{2} \mathrm{Et}$ and their locations within the reference co-ordinate axes:

	Direction cosines with		
	X	Y	Z
$b_{1}{ }^{\prime}=0.618$	+0.922	-0.379	+0.077
$b_{2}^{\prime}=0.679$	+0.378	+0.926	+0.023
$b_{3}{ }^{\prime}=0.551$	-0.081	+0.009	+0.997

For geometrical simplification in the succeeding calculations $b_{3}{ }^{\prime}$ has been taken as coincident with the Z direction. Following Le Fèvre and Sundaram ${ }^{8}$ we accept the ethoxycarbonyl group moment components as $\mu_{X}=+0.75, \mu_{Y}=+1.55$, and $\mu_{Z}=-0.66 \mathrm{D}$.

Diethyl Oxalate.-Dougill and Jeffrey (ref. 10, M 167) have shown by X-ray diffraction that the solid-state isomer of dimethyl oxalate is the trans-form alone. The spectroscopic studies of Mizushima ${ }^{11}$ and Miyazawa ${ }^{\mathbf{1 2 , 1 3}}$ indicate that in the liquid and the gaseous

[^1]states this substance exists as a mixture of (presumably flat) cis- and trans-isomers, with no gauche-conformation present.

Fig. $3 a$ and b represent diagrammatically the trans- and the cis-form, respectively, constructed with non-planar $\mathrm{CO}_{2} \mathrm{Et}$ groups as derived from $2 b$ above; the $c i s$ is generated from the non-polar trans-configuration by a 180° rotation of one ethoxycarbonyl group about the central $\mathrm{C}-\mathrm{C}$ bond as axis. This results in a non-vanishing resultant moment $(1.32 \mathrm{D})$ in the Z direction, in addition to that along the $-Y$ axis. In form $3 a$, the semiaxes b_{1} and b_{2} are located in the X, Y plane with $b_{1} 50^{\circ}$ from X; in form $3 b$ the principal polarisabilities b_{1}, b_{2}, and b_{3} coincide with X, Y, and Z, respectively. Calculations are summarised in Table 4.

Table 4.
Calculations for diethyl oxalate.

Fig.	10^{23}, calc.	μ, calc. (D)	$10^{12} \mathrm{~m} K$, calc.	Fig. $10^{23} b$, calc.	μ, calc. (D)	$10^{12}{ }_{\mathrm{m}} K$, calc.
	$b_{1}=1.403$			b. $\left\{b_{1}=1.353\right.$		
a, tran	$\left\{\begin{array}{l} b_{2}=1.317 \\ b_{3}=1.129 \end{array}\right.$	0	+2.9	$3 b, c i s\left\{\begin{array}{l}b_{2}=1.367 \\ b_{3}=1.129\end{array}\right.$	$3 \cdot 4$	$+91.2$

For an equivalent mixture of cis- and trans-isomers the following are predicted: μ,calc. $=2 \cdot 3_{8} \mathrm{D},{ }_{\mathrm{m}} K$, calc. $=+47 \times 10^{-12}$, in good agreement with the observed values of $2.4_{1} \mathrm{D}$ and $+45.4 \times 10^{-12}$, respectively (as recorded by Le Fèvre, Le Fèvre, and Oh, ref. 14, p. 223). If, however, the ethoxycarbonyl group polarisabilities are derived from

(a)

(b)

(c)

Fig. 4.
structure 1 (Fig. 1) for ethyl acetate, then the calculated molar Kerr constants for diethyl oxalate conformations are $+\mathbf{1 0 . 2} \times 10^{-12}$ (trans) and $+232 \times 10^{-12}$ (cis), whereupon a $1: 1$ ratio gives the correct $\mu_{\text {resultant }}$, but yields an ${ }_{\mathrm{m}} K$, calc. of $+121 \times 10^{-12}$, which is too high. For a structure intermediate between $3 a$ and b, with the two trigonal carbon planes at right angles, μ, calc. $=2 \cdot 3_{8} \mathrm{D}$ and ${ }_{\mathrm{m}} K$, calc. $=-32 \times 10^{-12}$.

Diethyl Malonate.-Polarisability semi-axes, resultant dipole moments, and molar Kerr constants computed for conformations $4 a-c$ of diethyl malonate are listed in Table 5.

Table 5.
Calculations for diethyl malonate.

10^{23}, calc.	μ, calc. (D)	$\begin{aligned} & 10^{12}{ }_{\mathrm{m}} K \\ & \text { calc. } \end{aligned}$	$10^{23} \mathrm{~b}$, calc.	calc. (D)	$\begin{aligned} & 10^{12}{ }_{\mathrm{m}} K, \\ & \text { calc. } \end{aligned}$	10^{23}, calc.	calc. (D)	$\begin{gathered} 10^{12}{ }_{\mathrm{m}} K \\ \text { calc. } \end{gathered}$
Form 4a			Form $4 b$			Form 4c		
$b_{1}=1.569$			$b_{1}=1.582$			$b_{1}=1.502$		
$b_{2}=1.533$	$2 \cdot 0$	$+56.6$	$b_{2}=1.520$	$3 \cdot 6$	+181	$b_{2}=1.600$	$2 \cdot 1$	-28.9
$b_{8}=1.284$			$b_{3}=1.284$			$b_{3}=1.284$		

Models give little guidance in choosing from the infinitude of possible conformations; we therefore consider the simplest, i.e., those in which the unit $\mathrm{O}_{2} \mathrm{C} \cdot \mathrm{C} \cdot \mathrm{CO}_{2}$ is planar. In each case b_{3} is coincident with the Z axis; b_{1} and b_{2} lie along the X and the Y direction, respectively, for structures $4 b$ and c; b_{1} for configuration $4 a$ is located 60° from X as indicated.
${ }^{14}$ Le Fèvre, Le Fèvre, and Oh. Austral, J. Chem., 1957, 10, 218.

The observed values from Table 2 are: $\mu=2.57 \mathrm{D}$, and ${ }_{\infty}\left({ }_{\mathrm{m}} K_{2}\right)=31.6 \times 10^{-12}$. Clearly none of the three structures considered is present alone. A mixture of all three can be made to give a resultant dipole moment and molar Kerr constant compatible with experiment.

Esters of Formula $\left[\mathrm{CH}_{2}\right]_{n}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{2}$, where $\mathrm{n}=2,4$, and 8.- X-Ray crystallographic investigations (ref. 10, M 166, M 203, M 226) show that the solid-state configuration for succinic, adipic, and sebacic acid is one in which the carbon atoms of the methylene groups have a planar, extended, zig-zag arrangement and the carbonyl groups, which are trans to

(a)

(d)

(b)

(e)

(c)

(f)

Fig. 5.
each other, are substantially in this plane (the slight deviations reported are generally attributable to effects of hydrogen-bonding with closely neighbouring acid molecules).

In the present work we examine the various possible isomers generated by rotations of the terminal ethoxycarbonyl groups relative to each other and to the methylene carbon chain. Fig. $5 a$ represents a non-polar trans-type structure closely analogous to the solidstate configuration of succinic acid; $5 b$ is formed from $5 a$ by rotation of one ethoxycarbonyl group through 180°, and $5 c$ by rotation of both ethoxycarbonyl groups 180° from their respective positions in $5 a$. Calculated values of the molecular polarisabilities, dipole moments, and molar Kerr constants are listed in Table 6. $\mathrm{C}-\mathrm{C}-\mathrm{C}$ bond angles for the methylene carbon atoms have been taken as 110° throughout. The reference co-ordinate axes have been chosen so that X, Y, and Z coincide with the principal axes $b_{1}{ }^{\prime}, b_{2}{ }^{\prime}$, and $b_{3}{ }^{\prime}$ respectively, of the ethoxycarbonyl group upon which they have been superimposed in the diagrams $5 a-c$.

The observed values are: $\mu=2.10 \mathrm{D}$, and $\omega\left({ }_{m} K_{2}\right)=+14.3 \times 10^{-12}$. None of the
Table 6.
Calculations for diethyl succinate

conformations $5 a-c$ can be present alone nor will any mixture of these give both the right dipole moment and molar Kerr constant; e.g., a mixture of polar form $5 b(39 \%)$ with nonpolar form $5 a$ or $5 c(61 \%)$ yields the observed dipole moment, but the resultant ${ }_{\mathrm{m}} K$, calc. becomes $(44.6-44.7) \times 10^{-12}$. The low value of $\infty\left({ }_{m} K_{2}\right)$ suggests the participation in the equilibrium mixture of structures in which the group $\mathrm{O}_{2} \mathrm{C} \cdot \mathrm{C} \cdot \mathrm{C} \cdot \mathrm{CO}_{2}$ is non-planar. Accordingly gauche-type dispositions of the ethoxycarbonyl groups must also be considered. Fig. $5 d$ represents one such group trans and the other gauche (achieved by rotation of the $\mathrm{CO}_{2} \mathrm{Et}$ group through $\pm 120^{\circ}$ from the trans-position as in $5 a$); $5 e$ is a gauche,-gauchetype structure in which the group moments are anti-parallel, to give a non-polar isomer; $5 f$ is a polar gauche,gauche-arrangement in which the carbonyl groups both project above the plane of the methylene carbon atoms. Calculated values for conformations

Table 7.
Calculations for diethyl succinate.

$\begin{aligned} & 10^{103 b,} \\ & \text { calc. } \end{aligned}$	Direction cosines with			$\stackrel{\mu}{\mu}{ }_{\text {calc. }}$	$\begin{aligned} & 10^{12} \mathrm{~m} K, \\ & \text { calc. } \end{aligned}$	$\begin{aligned} & 10^{28 b}, \\ & \text { calc. } \end{aligned}$	Direction cosines with				$\begin{aligned} & \mathbf{1 0}^{12}{ }_{\mathrm{m}}^{\mathrm{m}} \mathrm{ca} \mathrm{C} . \end{aligned}$
	X	Y	Z				X	Y	Z		
	Form 5d					Form $5 f$					
$b_{1}=1.665$	$+0.944$	-0.131	$+0.303$			$b_{1}=1.749$	+0.984	$+0 \cdot 181$	0		
$b_{2}=1.752$	$+0 \cdot 180$	$+0.974$	-0.140	2.9	-26.4	$b_{2}=1.560$	-0.181	$+0.984$	0	2.9	$-47 \cdot 8$
$b_{3}=1.507$	-0.276	$+0.186$	$+0.943$			$b_{3}=1.613$	0	0	+1		
		Form $5 e$									
$b_{1}=1.779$	$+0.829$	$+0.347$	-0.438								
$b_{2}=1.482$	$+0.007$	$+0.778$	$+0.629$	0	$+3 \cdot 4$						
$b_{3}=1.661$	$+0.559$	-0.524	$+0.643$								

$5 d-f$ are summarised in Table 7. The axes X, Y, and Z for the trans,gauche-form coincide with $b_{1}{ }^{\prime}, b_{2}{ }^{\prime}$, and $b_{3}{ }^{\prime}$, respectively, of the $\mathrm{CO}_{2} \mathrm{Et}$ group (indicated in Fig. $5 d$); for the configurations $5 e$ and f, X is collinear with the longitudinal axis of the $\alpha-\mathrm{C}-\mathrm{C}$ bond, and Y is perpendicular to X and in the plane of the C_{4} chain; Z is normal to this plane.

Accord with experiment can be attained only if we regard the dissolved species as a mixture of several rotational isomers.

Conformations of diethyl adipate ($6 a-f$) and diethyl sebacate ($7 a-f$) analogous to structures $5 a-f$ have been similarly examined. The physical constants thus calculable are listed in Tables 8 and 9 , respectively.

The observed quantities are for diethyl adipate, $\mu=2.34 \mathrm{D}$ and $\infty\left({ }_{\mathrm{m}} K_{2}\right)=+27.6 \times$ 10^{-12}; and for diethyl sebacate, $\mu=2.55 \mathrm{D}$ and $\infty\left({ }_{m} K_{2}\right)=+22.8 \times 10^{-12}$. As for diethyl succinate, conformations 6 (or 7) $a-c$, i.e., with the group $\mathrm{O}_{2} \mathrm{C} \cdot[\mathrm{C}]_{4 \text { or } 8} \cdot \mathrm{CO}_{2}$ planar, cannot alone account for the observed quantities. Agreement with experiment can be achieved only if we regard each of the esters in this solvent environment as a mixture of all possible isomers.

Table 8.
Calculations for diethyl adipate.

Table 9.
Calculations for diethyl sebacate.

$10^{23} b,$	Direction cosines with			$\begin{gathered} \mu, \\ \text { calc. } \end{gathered}$	$\begin{gathered} 10^{12}{ }_{\mathrm{m}} K \\ \text { calc. } \end{gathered}$	$\begin{aligned} & 10^{23} b, \\ & \text { calc. } \end{aligned}$	Direction cosines with			$\begin{gathered} \mu, \\ \text { calc. } \end{gathered}$	$\begin{gathered} 10^{12}{ }_{m}^{m} K \\ \text { calc. } \end{gathered}$
calc.	X	Y	Z				X	Y	Z		
Form 7a						Form 7d					
$b_{1}=2.836$	+0.988	+0.152	0			$b_{1}=2.742$	+0.988	$+0.097$	$+0.123$		
$b_{2}=2.940$	$-0 \cdot 152$	$+0.988$	0	0	+13.9	$b_{2}=2.957$	-0.087	$+0.993$	-0.086	2.9	-121
$b_{3}=2 \cdot 369$	0	0	+1			$b_{3}=2 \cdot 448$	-0.130	$+0.074$	$+0.989$		
Form 7b						Form $7 e$					
$b_{1}=2.976$	$+0.966$	$+0.259$	0			$b_{1}=2.970$	$+0.897$	$+0.399$	-0.191		
$b_{2}=2.980$	-0.259	$+0.966$	0	$3 \cdot 4$	+151	$b_{2}=2.689$	-0.441	$+0.785$	-0.435	0	$+8.8$
$b_{3}=2 \cdot 369$	0	0	+1			$b_{3}=2 \cdot 487$	-0.023	+0.475	$+0.880$		
Form 7c						Form $7 f$					
$b_{1}=3.026$	$+0.882$	+0.471	0			$b_{1}=2.955$	$+0.933$	$+0.360$	0		
$b_{2}=2.750$	-0.471	$+0.882$	0	0	+16.4	$b_{2}=2.648$	-0.360	$+0.933$	0	2.9	-204
$b_{3}=2 \cdot 369$	0	0	+1			$b_{3}=2.543$	0	0	+1		

Acknowledgment is made to the University of Sydney for the award of a Research Studentship (to D. I.).
School of Chemistry,
University of Sydney, N.S.W., Australia.
[Received, December 27th, 1961.]

[^0]: ${ }^{1}$ Le Fèvre, " Dipole Moments," Methuen, London, 3rd edn., 1953.
 ${ }^{2}$ Buckingham, Chau, Freeman, Le Fèvre, Rao, and Tardif, J., 1956, 1405.
 ${ }^{3}$ Le Fèvre and Le Fèvre, (a) J., 1953, 4041; (b) Rev. Pure Appl. Chem., 1955, 5, 261; (c) Chap. XXXVI in "Physical Methods of Organic Chemistry," ed. Weissberger, Interscience Pub., New York, London, 3rd edn., Vol. I, p. 2459.
 ${ }^{4}$ Wesson, "Tables of Electric Dipole Moments," Technology Press, M.I.T., 1948.
 5 Jatkar and Phansalkar, J. Univ. Poona Sci. and Technol., 1953, 45.
 ${ }^{6}$ Ketelaar and van Meurs, Rec. Trav. chim., 1957, '76, 437.
 ${ }^{7}$ Shott-L'vova and Syrkin, Izvest. Akad. Nauk S.S.S.R., Otdel. Khim. Nauk, 1954, 381.
 ${ }^{8}$ Le Fèvre and Sundaram, J., 1962, 3904.

[^1]: ${ }^{9}$ O'Gorman, Shand, and Schomaker, J. Amer. Chem. Soc., 1950, 72, 4222.
 ${ }^{10}$ Sutton, "Tables of Interatomic Distances and Configuration in Molecules and Ions," Chem. Soc. Spec. Publ. No. 11, 1958.

 11 Mizushima, "Internal Rotation and Molecular Configuration," Academic Press Inc., New York, 1954, p. 75.

 12 Miyazawa and Kurantani, J. Chem. Soc. Japan, 1951, 72, 804.
 ${ }^{13}$ Miyazawa, J. Chem. Soc. Japan, 1954, 75, 540.

